Comparison of rotational grazing and continuous grazing on native pasture: preliminary results from Old Man Plains.

Kain, A.J.

April 2008

This report presents background, methodology and recommendations for the grazing trial conducted at Old Man Plains Research Station as part of the Desert Knowledge CRC project “Rangelands grazing management strategies for improved economics and resource stability” funded by the National Landcare Program. The project was completed by a partnership including DPIFM, CLMA, DKCRC and CSIRO.
Table of Contents

Acknowledgements .. 3

Abstract .. 4

1. Background ... 5
 Study Site ... 5
 Hypotheses ... 6
 Objectives ... 6

2. Methodology ... 7
 Grazing Strategies .. 7
 Stocking rate .. 8
 Seasonal Conditions ... 8
 Pasture Assessment .. 8
 Stock Performance .. 10

3. Results ... 10
 Seasonal Conditions ... 10
 Stocking Rates ... 10
 Pasture Assessment ... 11
 Species Diversity .. 11
 Stock Performance .. 12

4. Future Work & Recommendations ... 13

5. References ... 14
Acknowledgements

The Department of Agriculture, Fisheries and Forestry’s National Landcare Program provided funding through the Desert Knowledge CRC to finance this project in conjunction with the Northern Territory Department of Primary Industry, Fisheries and Mines. This project was completed by a partnership including the Department of Primary Industry, Fisheries and Mines, the Centralian Land Management Association, CSIRO and DKCRC.

Many individuals were involved with this project throughout its course. Andrea Tschirner, Jo Rodney, Leigh Hunt, Dionne Walsh, Ben Norton, Chris Materne, Robyn Cowley and Neil MacDonald were involved in the initial setting up of the project. Mark Stafford Smith from the DKCRC was instrumental in sourcing funding and getting the project off the ground. Staff from the Department of Primary Industry, Fisheries and Mines, Alice Springs, including Ellena Hannah, Coral Allan, Chris Materne, Bryan Gill, Jocelyn Coventry, Debbie Roberts and Sally Sims were involved with pasture and cattle field work. Coral Allan provided assistance with processing laboratory samples and data entry. Special thanks to Robyn Cowley for her invaluable assistance in reporting.

Jillian Fisher, project manager based with the Centralian Land Management Association, provided invaluable assistance throughout the entire project. Jillian managed the overall project, liaised between partners, reported to the funding organisations and assisted with both cattle work and pasture assessments.

The concept of the rotational grazing strategy was designed by the Pastoral Production Branch of DPIFM. Establishment of the trial was only achieved through the extremely dedicated, hard working staff of the Pastoral Production Branch and Station Support staff.
Abstract

There has been widespread interest by the industry in spelling practices, which hold out the potential for increased production without damage to natural resources, and may lead to sustained production with recovery of the natural resources. The benefits of rotational grazing in the semi arid rangelands have been little documented and it is therefore difficult for managers to commit to these new grazing strategies. The trial at Old Man Plains Research Station, 50km south west of Alice Springs, compares a four paddock rotation with a continuously grazed paddock, both used by breeder herds. Both the treatment and control paddocks are dominated by native pastures of mulga (*Acacia aneura*) over woollybutt (*Eragrostis eriopoda*) and kerosene grass (*Aristida holothera*) and oatgrass (*Enneapogon avenaceus*) pastures. The four paddock rotation was designed to allow herd management activities to be incorporated into paddock moves and was based on the Resource Consulting Services design.

The study aimed to test the hypotheses that rotational grazing will improve the quality and quantity of pasture available, improve land condition and therefore animal productivity and reduce risks associated with a variable climate. This report presents the methodology and data collected to date. Pasture data consists only of pre trial data. A summary of plant species diversity and rank abundance is provided. Cattle in the rotation performed slightly better than the control with regard to average cow weight and branding percent. Pregnancy status and branding percent were similar for both treatments. At the time of reporting, the trial had not been running for very long (approximately 16 months), so it was not possible to draw any recommendations on the grazing strategy itself.

This trial was run in conjunction with studies on Idracowra and Mt Riddock stations.
1. Background

There is a growing awareness amongst pastoral land managers of the need to manage their natural resources to ensure a strong, environmentally sound industry that will be sustainable into the future. Through land management extension activities, pastoralists are gaining a good understanding of how natural ecosystems function in relation to the grazing enterprise.

In the arid rangelands, the cost of intensive infrastructure and increased management input is often prohibitively expensive when considering alternative grazing strategies. Breeding enterprises are also concerned with grazing strategies that require regular herd movements at the risk of separating cows and calves. The grazing strategy trialled at Old Man Plains Research Station was designed to minimise cost and ongoing management commitments using a Droughtmaster breeder herd. It is based on a four paddock rotation that is discussed as part of the Resource Consulting Services Grazing for Profit workshop.

This report presents the methodology and data collected to date. As the trial had not been running for very long it was not possible to draw any recommendations on the grazing strategy itself.

Study Site

Old Man Plains Research Station lies approximately 50km south west of Alice Springs. Average temperatures for the region range from a low of 21.4°C to a high of 36.3°C in January and a low of 4.0°C to a high of 19.7°C in July. The median October to September rainfall at the homestead is 238mm and the median summer rainfall is 173mm.

The area of land under rotation is in the central part of Old Man Plains Research Station. The two northern paddocks (No. 1 and Crows Nest) are predominantly calcareous shrubby grasslands that support palatable, annual pastures of oatgrass (*Enneapogon avenaceus*) (Figure 1 & Table 1). The two southern paddocks (East and West Whitepoint) are mostly sand plains with mulga (*Acacia aneura*) over perennial grasses such as woollybutt (*Eragrostis eriopoda*) and kerosene grass (*Aristida holathera*). These areas are much less palatable and nutritious than the northern paddocks. The control paddock (Waterhouse) is a mixture of both land types. Throughout all paddocks, scattered small drainage floors supporting mulga and ironwood (*Acacia estrophiolata*) over a mixed grassland are a focus for grazing. These broad land types are described using the land resource mapping of Lennartz and Whitehouse (2002).

![Figure 1: Land types of the trial area, Old Man Plains Research Station, from Lennartz & Whitehouse (2002).](image-url)
Table 1: *Land types occurring within the trial area, Old Man Plains Research Station.*

<table>
<thead>
<tr>
<th>Land Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcareous Shrubby Grasslands</td>
<td>Pebbly, calcere plains and rises. Sparse witchetty bush and mulga shrubland over oatgrass.</td>
</tr>
<tr>
<td>Mulga Sand Plains</td>
<td>Broad sandy plains. Mulga woodland over erect kerosene grass & woollybutt grass.</td>
</tr>
<tr>
<td>Alluvial Drainage Floors</td>
<td>Shallow drainage floors, some incised channels. Mulga and/or ironwood woodland over a mixed grassland of oatgrass, erect kerosene grass and buffel grass.</td>
</tr>
</tbody>
</table>

Hypotheses
1. Summer spelling will improve the quality and quantity of pasture available.
2. Improved land condition will increase animal productivity.
3. Spelling and rotational grazing will reduce risks associated with a variable climate.

Objectives
- Decrease overheads through intensification ie. using one paddock at a time not all paddocks continuously.
- Increase gross margin, as the timing of moving stock through the paddocks allows for controlled mating.
- Cows have a better chance of being in good condition as they are always going onto fresh feed.
- Pastures are rested during the growing season and land condition will be maintained.
2. Methodology

A continuously grazed control paddock was compared with a four paddock rotation (Figure 2).

Grazing Strategies
The rotationally grazed treatment consisted of four paddocks that are considerably smaller than the district average of 335km2 (Leigo, 2006). The two northern paddocks have an average size of 25km2. The southern paddocks, West Whitepoint and East Whitepoint Paddocks, are 68km2 and 79km2 respectively. The northern paddocks are dominated by oatgrass, an annual pasture species that is capable of producing abundant, nutritious fodder, even when it has hayed off (Allan & Wilson 2006). Being an annual species it must set seed so that it can regenerate during subsequent summer growing seasons. Spelling these paddocks every summer allows the plants to achieve seed maturity and produce maximum growth thus maximising the opportunities for maintaining pasture condition and optimising pasture availability.

The southern paddocks are dominated by less palatable, perennial grasses such as woollybutt and erect kerosene grass. This pasture type has low palatability and nutrition and low carrying capacity. The grazing strategy allows these paddocks to be spelled every second summer. The northern rotational paddocks were watered from No. 1 trough and the southern paddocks were watered from both No.1 trough and Whitepoint bore.

![Figure 2: Layout of rotationally grazed paddocks and adjacent continuously grazed control paddock, Old Man Plains Research Station.](image)

When cattle are moved from one paddock to another within the rotation they are simply trapped through the yard at the central watering point (No. 1 trough). Trap gates are set by one person on a routine bore run. If desired, herd management activities such as branding and pregnancy testing can be incorporated into the moves.

The control consisted of one continuously grazed paddock (Waterhouse paddock) of 93km2. Bulls are included in the herd for the same two month period as in the rotationally grazed paddocks. The paddock is watered by Whitepoint bore.
Stocking rate
Whilst cattle can travel large distances from water, it has been found that grazing intensity declines with distance from water (Fisher 2001). To simplify our calculations, we assumed that most grazing occurs within 5km of water and that grazing is even within this area. 151km² (77%) of the rotationally grazed paddocks and 49km² (53%) of the continuously grazed paddocks was within 5km of water.

Stocking rates were calculated annually using forage budgets at the end of the summer growing season in April. Available forage was calculated using the formula; Yield x Palatability Index x Utilisation. The palatability index and utilisation rates are specific to individual land types and land condition classes and have been described using methodology from the Grazing Land Management workshop for central Australia (Chilcott et al. 2005). Utilisation rates may appear to be high given the land condition status however the available pasture is reduced using the palatability index.

Stock numbers for the rotation were set so as to ensure that the paddock with the lowest carrying capacity was not overgrazed. Stock numbers for the rotation and the control were set to achieve desired utilisation levels as per the guidelines in the central Australian Grazing Land Management Workshop (Chilcott et al. 2005).

Table 2: Palatability index and utilisation rates used for forage budgets.

<table>
<thead>
<tr>
<th>Land Type</th>
<th>Land Condition Class</th>
<th>Palatability Index</th>
<th>Utilisation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcareous Shrubby Grassland</td>
<td>C</td>
<td>0.65</td>
<td>25</td>
</tr>
<tr>
<td>Mulga Sand Plain</td>
<td>A</td>
<td>0.2</td>
<td>15</td>
</tr>
<tr>
<td>Alluvial Drainage Floors</td>
<td>B</td>
<td>0.7</td>
<td>20</td>
</tr>
</tbody>
</table>

Seasonal Conditions
Rainfall records were collected via an accumulating rain gauge located at Whitepoint bore and No.1 Dam. An automatic gauge was also located at No.1 Dam as of January 2007.

Pasture Assessment
Stratified site sampling was used to gauge pasture composition, quantity and cattle grazing distribution. All of the pastures were assessed in April 2007 (Table 3 - 4) and are due to be reassessed in April 2008.

Table 3: Assessment record for rotationally grazed paddocks.

<table>
<thead>
<tr>
<th>ROTATIONALLY GRAZED PADDOCKS</th>
<th>Paddock</th>
<th>Date In – Date Out</th>
<th>Days</th>
<th>Pasture Assessment Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>West Whitepoint</td>
<td>1/11/06 – 30/4/07</td>
<td>181</td>
<td>Apr 2007</td>
</tr>
<tr>
<td></td>
<td>No.1</td>
<td>1/5/07 – 4/9/07</td>
<td>127</td>
<td>Apr 2007</td>
</tr>
<tr>
<td></td>
<td>Crows Nest</td>
<td>5/9/07 – 29/10/07</td>
<td>55</td>
<td>Apr 2007</td>
</tr>
<tr>
<td></td>
<td>East Whitepoint</td>
<td>30/10/07 – 30/3/08*</td>
<td></td>
<td>Apr 2007</td>
</tr>
</tbody>
</table>

* Proposed date for reassessing cattle numbers based on forage budget.

Table 4: Assessment record for continuously grazed paddocks.

<table>
<thead>
<tr>
<th>CONTINUOUSLY GRAZED PADDOCKS</th>
<th>Paddock</th>
<th>Date In – Date Out</th>
<th>Pasture Assessment Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Waterhouse</td>
<td>1/11/06 – 30/3/08*</td>
<td>Apr 2007</td>
</tr>
</tbody>
</table>

* Proposed date for reassessing cattle numbers based on forage budget.
Two sites at 500m, 1km and 3km from water were located within each of the rotationally grazed paddocks and the control paddock. Sites were selected to ensure that the vegetation was representative of the dominant vegetation communities within the trial. At each site, 50 x 1m2 quadrats were laid out in a one hectare grid.

Each quadrat was assessed for cover, total yield, top three species by percentage yield, species diversity, cattle activity and defoliation.

Cover was described as a percentage of soil surface covered with vegetative matter, living or dead. The assessment of cover was a visual estimation.

Yield assessments were also visually estimated with observers calibrating their estimates at the end of every day with ten dry weight samples. Yield was described as the amount of standing pasture.

The *three species ranked highest by percentage yield* were identified along with their percentage of yield. The total does not equal 100% where there are other species present eg. Species 1 = *Enneapogon avenaceus* 60%, Species 2 = *Tribulus terrestris* 25%, Species 3 = *Sida fibulifera* 10%

All plants occurring within a quadrat were identified to at least genus and then species where possible. This provided an assessment of plant *species diversity*.

Cattle activity was described using a qualitative index based on the relative abundance of dung and/or hoofprints (Table 5).

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No sign of cattle activity</td>
</tr>
<tr>
<td>1</td>
<td>Light activity</td>
</tr>
<tr>
<td>2</td>
<td>Moderate activity</td>
</tr>
<tr>
<td>3</td>
<td>Heavy activity</td>
</tr>
</tbody>
</table>

Heavy activity was described as either a well used stock pad or where nearly all of the non-vegetated part of the quadrat was covered with either manure or hoofprints. Whilst it did not refer to actual grazing it provided an insight into how cattle moved around a paddock.

Defoliation was described using an index based on estimated percentage of yield that had been removed (Table 6).

<table>
<thead>
<tr>
<th>Score</th>
<th>% Defoliation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No defoliation</td>
<td>No grazing</td>
</tr>
<tr>
<td>1</td>
<td>>0 and ≤5%</td>
<td>Slight grazing</td>
</tr>
<tr>
<td>2</td>
<td>>5% and ≤25%</td>
<td>Moderate grazing</td>
</tr>
<tr>
<td>3</td>
<td>>25% and ≤50%</td>
<td>Heavy grazing</td>
</tr>
<tr>
<td>4</td>
<td>>50% and ≤75%</td>
<td>Very heavy grazing</td>
</tr>
<tr>
<td>5</td>
<td>>75% and ≤100%</td>
<td>Severe grazing</td>
</tr>
</tbody>
</table>
Stock Performance
The initial induction of cows and calves into the trial (November 2006) included both the treatment and control animals. The rotation herd was Droughtmaster whilst the control herd was dominated by Tuli crosses.

Pregnancy status, calving percentages, branding percentages and animal weights were collected throughout the year. Bulls were placed with the herds for two months at a rate of approximately 4%.

Supplementation was continuously provided in the form of Uramol blocks in both the trial and the control.

3. Results

Seasonal Conditions
Seasonal conditions for the duration of the trial to date are described in Figure 3. The monthly totals suggest that above median rain fell in most months throughout both summers. This is likely to have allowed pasture to become robust and more resilient to grazing.

![Figure 3: Old Man Plains monthly rainfall from November 2006 to December 2007.](image)

Stocking Rates
When calculating stocking rates, the area described is only that within 5km of water as it is unrealistic to expect that all parts of a paddock are utilised evenly (Norton 2003, Quirk & McIvor 2006, Low 1972, Fisher 2001, Hunt et al. 2007).

Rotationally grazed treatment
Because paddock size, forage available and grazing time varied within the rotationally grazed treatments, a range of stocking rates were used (Table 7). Crows Nest and No. 1 Paddocks are similar in size and land type however their carrying capacity differed as Crows Nest had not recovered well from fire in 2002. The first grazing period was only part of a rotation. The first full rotation began on the 1st May 2007. The average stocking rate for 2007/08 was 1.1 AE/km². Average stocking rates were based on the area within 5km of water in all four of the paddocks.
assigned to rotational grazing. Even though one of the paddocks was not used in a given rotation it cannot be used for any other herd and therefore it should be part of the calculation.

Table 7: Stocking rate per rotationally grazed paddock

<table>
<thead>
<tr>
<th>Year</th>
<th>Rotation</th>
<th>Paddock</th>
<th>Area (km²) within 5km of water</th>
<th>Days</th>
<th>AE/km²/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-2007</td>
<td>Part only</td>
<td>West Whitepoint</td>
<td>59.3</td>
<td>181</td>
<td>0.85</td>
</tr>
<tr>
<td>2007-2008</td>
<td>One</td>
<td>No. 1</td>
<td>20.1</td>
<td>127</td>
<td>1.72</td>
</tr>
<tr>
<td>2007-2008</td>
<td>One</td>
<td>Crows Nest</td>
<td>24.2</td>
<td>55</td>
<td>0.63</td>
</tr>
<tr>
<td>2007-2008</td>
<td>One</td>
<td>East Whitepoint</td>
<td>52.0</td>
<td>Est.181</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Continuously grazed control
The stocking rate for the continuously grazed paddock in 2006/07 was 0.76 AE/km².

Pasture Assessment
Pretrial assessment of yield and cover was undertaken in April 2007 (Table 3).

Table 8: Pretrial yield and cover assessment, April 2007.

<table>
<thead>
<tr>
<th>Time of Assessment</th>
<th>Continuous Grazing</th>
<th>Rotational Grazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (Kg/Ha)</td>
<td>288</td>
<td>369</td>
</tr>
<tr>
<td>Cover (%)</td>
<td>19</td>
<td>14</td>
</tr>
</tbody>
</table>

Species Diversity
Species composition is expected to be different between the two areas as the dominant vegetation communities vary and this is shown in Table 9 and Figures 4 - 5. The rotational grazing paddocks have considerably higher number of species than the continuously grazed paddock.

Table 9: Total number of species recorded.

<table>
<thead>
<tr>
<th>Time of Assessment</th>
<th>Rotational Grazing</th>
<th>Continuous Grazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretrial 2007</td>
<td>76</td>
<td>40</td>
</tr>
</tbody>
</table>

In the following species abundance graphs (Figures 4 – 5), species are only included when frequency is >1%.

Figure 4: Rank abundance of species in rotationally grazed paddocks, pre grazing 2007.
Figure 5: Rank abundance of species in continuously grazed paddock, pre grazing 2007.

Stock Performance
Regular stock management activities undertaken to date have been recorded in the Table 10. Stock in the rotation performed slightly better than the control with regard to average cow weight and branding percent. Although the control cows were almost 30kg lighter than the treatment cows, the differences were not quite significant (T-test, t(53)=2.00, P=0.051). The calf weights were not significantly different (T-test t(24)=2.06, P=0.337). Pregnancy status and branding percent were similar for both treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Date</th>
<th>No. cows</th>
<th>No. Pregnant</th>
<th>Preg %</th>
<th>Avg cow wght (kg)</th>
<th>No. calves branded</th>
<th>Branding %</th>
<th>Avg calf wght (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>20/9/07</td>
<td>30</td>
<td>20</td>
<td>67%</td>
<td>514</td>
<td>17</td>
<td>57%</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>6/3/08</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>11/9/07</td>
<td>81</td>
<td>56</td>
<td>69%</td>
<td>553</td>
<td>50</td>
<td>63%</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>5/3/08</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Future Work & Recommendations

This project will continue with funding received from NHT through the Northern Territory Natural Resource Management Board. It is not possible to make any recommendations regarding the grazing strategy at this stage. The recommendations in this section refer to future research within the trial.

It is recommended that pasture sampling (cover, yield, yield composition, species diversity) be undertaken at the end of the summer growing period; approximately April or May. Cattle activity and defoliation could be done immediately after or mid-way through a graze period to capture ‘normal’ patterns of use. Use may vary depending on seasonal conditions or the time cattle have spent in the paddocks e.g. cattle will use surface waters after rain and therefore activity in the monitoring sites will not truly reflect distance from water.

Additional waters need to be located in the southern rotational paddocks (West and East Whitepoint) and the control paddock (Waterhouse). This will increase the available forage. Current location of watering points forces cattle to use very narrow strips of country when accessing water and this is likely to be causing undue pressure on the land resources in these areas.
5. References

